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1 Introduction

Authentication is essential for guaranteeing the integrity and validity of a message because
traditional signatures can be abused. The Message Authentication Code (MAC) is proposed to
address this issue, using a message and a secret key as inputs and an authentication code as out-
put. However, MAC’s fail to meet the properties of non-repudiation and the property of being
publicly verifiable [13]. A signer must also evaluate and retain a secret key and the code corre-
sponding to each recipient if they wishes to interact with numerous recipients, which is laborious
work. In 1976, Diffie and Hellman [5] proposed the concept of a digital signature to circumvent
these restrictions. Several digital signature systems, including the ElGamal Signature Scheme,
Digital Signature Algorithm (DSA) [23], were proposed during the same period as the digital
signature scheme based on RSA in [20]. All these digital signature techniques have the attribute
of global verifiability and it isn’t always desirable. Undeniable signatures scheme introduced by
David Chaum and Hans van Antwerpen, are a type of digital signature that requires the signer’s
cooperation for verification [3]. The security of the USS depends on the DLP’s difficulty. The
signer’s cooperation is required during the verification step in undeniable signatures, and the
signer cannot refute the signature’s authenticity. USS include a disavowal procedure when a re-
cipient receives a signature that is not valid.

The recipient can readily determine the cause of an unacceptable signature using the disavowal
protocol, such as whether the signature is valid or not, owing to due to fraudulence or the signa-
tory’s failure to comply effectively in the verification process. Following Chaum and Antwerpen’s
DLP system, few undeniable signature schemes have been put forward, whose safety depends
on various mathematical problems such as the Integer Factorization Problem (IFP) [8], the Con-
jugacy Search Problem (CSP) [25], the Elliptic Curve Discrete Logarithm Problem (ECDLP) [4]
and so on.

Kahrobaei and Khan [12] proposes a non-commutative key exchange scheme extending the
ElGamal Cipher to polycyclic groups. It identifies suitable group criteria for secure cryptosystems
and analyzes the complexity of related decision problems. Sakalauskas et al. [21] proposes a key
agreement protocol based on infinite non-commutative group presentation and representation
levels. It leverages the CSP and a modified matrix-based Discrete Logarithm Problem (DLP) for
security. The approach prevents cryptanalysis by avoiding CSP-to-DP reduction and transforms
the Word Equivalence Problem (WEP) to the representation level, eliminating group complexity
restrictions.

Eftekhari [6] presents a key exchange protocol relying on the hardness of discrete logarithms,
with exponentiation concealed by conjugation. A platform-dependent cryptanalysis is provided,
and a matrix group over a noncommutative ring is proposed for enhanced security. Gupta et
al. [11], introduces a key exchange protocol in a non-commutative semigroup over a group ring,
relying on the hardness of the Factorization with Discrete Logarithm Problem (FDLP). It includes
security and complexity analysis and introduces an ElGamal cryptosystem based on FDLP using
invertible matrices over group rings.

Muthukumaran [17] proposes a new approach to draft a key exchange protocol over a near-
ring whose safety depends upon the mathematical problems over FP. This study [27] models the
discrete logarithmic problem using non-commutative semigroup matrices over a semiring, and
proposes a discrete key transfer protocol based on factorial problem (DLPFP) difficulty. Sensitive
Health Information (SHI) in healthcare systems is encrypted using an ElGamal cryptosystem,
and the protocol’s security and complexity are examined. Tahat et al. [24] an efficient self-certified
multi-proxy signature schemewithmessage recovery based on an elliptic curve discrete logarithm
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problem is proposed. Based on the hardness of the word problem in a group, the public key
cryptosystem is investigated in [9]. In this [22] work, we propose a USS based on DLFP over
the semiring. We also illustrate the suggested USS and its use in Mobile Edge Computing (MEC).
Secure digital signatures can benefit from certificateless cryptography’s ability to improve security
by eliminating certificates and resolving key management concerns. On the other hand, a public
key replacement attack can be used to exploit a flaw in a suggested scheme [26].

TheGGH-MKA(Goldreich-Goldwasser-Halevi) lattice-based encryption schemehas been strength-
ened through prior studies that established clear and rigorous rules for generating secure private
and public keys, significantly boosting its security and reliability [14].

Beaula et al. [2] investigation enhances data security by using graph theory techniques like
(Sg, C3)-multi-decomposition and anti-magic decomposed labeling to encrypt anddecrypt 8-character
alphanumeric strings.

A new digital signature algorithm is designed [1], which proves that if an attacker tries to get
the public and private keys, then an exponential time is needed as Table 1.

Table 1: Comparison table between USS and DSS.

Feature USS DSS
Non-repudiation provides non-repudiation also ensures non-repudiation
Key-dependency typically depends on a secret

key
employs a public-private key
pair

Key-management requires effective key man-
agement

entails secure management
of key pairs

Algorithm type Commonly uses hash func-
tions from cryptography

utillizes asymmetric cryptog-
raphy

Verification process Asking the signer to disclose
the secret key could be one
way to verify

verification relies on the pub-
lic key

Flexibility might provide greater design
and execution flexibility

standardized compatibility
across various systems

In this study, we define the DLCSFP, which is a mixture of DLP, CSP, and FP over a non-abelian
group. Utilizing the safety and assurance settings, the complexity of brute force attacks is also
thoroughly examined. We provide an undeniable signature scheme whose security in a non-
abelian group over semiring depends on the DLCSFP’s hardness. The security analysis and the
complexity analysis of the suggested scheme are also given. The paper is organized as outlined
below.

In Section 2, this paper provides the preliminaries and discuss the combination of DLP, CSP,
and FP necessary for understanding thework. Section 3 discusses a non-abelian group over semir-
ing based signature system. In Section 4, it analyzes the proposed scheme’s security and complex-
ity. Finally, Section 5, ends with a conclusion.
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Table 2 is a list of the concepts utilized in the paper.

Table 2: List of notation.

Notation Description
SR Semiring
Zp \ {0, 1} Ring of integer modular and remove 1
H Commutative semiring
H1,H2 Subsemiring
CG(g) Centralizer of g
F Non commutative group
L Commutative subgroup
t(m1) Hash function
(0, 1)∗ Set of all finite-length strings of 0s and

1s, including the empty string

Abbreviations

In this paper, the following list of abbreviations in Table 3 is used.

Table 3: List of Abbreviations

Abbreviations Name
CDL Conjugacy Search Problem and Discrete Logarithm Problem
CSP Conjugacy Search Problem
FP Factor Problem
DH Diffie Hellman
DLCSP Discrete Logarithm Conjugacy Search Problem
DLCSFP Discrete Logarithm Conjugacy Search Factor Problem
DLFP Discrete Logarithmic Factor Problem
DLP Discrete Logarithm Problem
DP Disavowal protocol
DSA Digital Signature Algorithm
DS Digital Signature
DSS Digital Signature Scheme
USS Undeniable Signature Scheme
VP Verification Protocol

2 Preliminaries

In this section, we define the semiring, CSP, DLP, and FP for more details refer [19, 18].
Definition 2.1 (Semiring). (SR)[19] A nonempty set called a semiring (SR) with addition and multipli-
cation defined as,
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1. The commutative monoid (SR,+) has identity element 0.

2. A monoid with identity element 1 is represented by (SR, ·) .

3. Multiplication is distributive over addition from both sides.

4. For every r in SR, 0 · r = 0 = r · 0 .

Definition 2.2 (Conjugacy Search Problem). [18] In a non-commutative group (H, ·), for a given a,b
∈ H , the conjugacy search problem is to find x ∈ H such that a = x−1 · b · x.

Definition 2.3 (Discrete Logarithm Problem(DLP)). [15] Let p be a prime and given an element
β ∈ Zp where Zp is a cyclic group of order p − 1 generated by α, find an integer, 0 ≤ t ≤ p − 1 such that
αt ≡ β (mod p).

Definition 2.4 (Factor Problem). [16] Let x be an arbitrary element in non-commutative semiring H ,
and letH1 andH2 be two subsemirings inH . Factor problem (FP ) is defined as finding any two elements
x1 ∈ H1, x2 ∈ H2 such that l = x1x2.

Definition 2.5 (Hash function). [13] A hash function (with output length ℓ) is a pair of probabilistic
polynomial-time algorithms (Gen, H) satisfying the following:

• Gen is a probabilistic algorithm that takes as input a security parameter 1n and outputs a key s. We
assume that 1n is implicit in s.

• H takes as input a key s and a string x ∈ {0, 1}∗ and outputs a stringHs(x) ∈ {0, 1}ℓ(n) (where n
is the value of the security parameter implicit in s).

Definition 2.6. Let F be a non-commutative group and H be a commutative subgroup of F . Let y′1 ∈ F
such that y′1 = xzi11 zi22 x−1 where x,z1and z2 ∈ F , i1, i2 ∈ Zp \ {0, 1} and p is a prime. The DLCSFP is
to find x,i1, i2 where y′1,z1 and z2 are public parameters.

The security level that the creator of the cryptosystemwants is expressed inH and p, as defined
in Definitions 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6.

3 Undeniable Signature Scheme based on Semiring

We propose a new undeniable signature method in this part, whose security is based on the
DLCSFP introduced in Definition 2.6. The following is a description of the signature scheme:

Set-Up:
Let F = Mn×n(SR) have an abelian subgroup L.
The definition of a hash function t is (0, 1)∗ → F \ L.

Key-Gen:
Let P = XAa1

1 Aa2
2 X−1 and A1, A2 ∈ F \ L, whereX ∈ N and a1, a2 ∈ Zp \ {0, 1}. The private key

of the signer is SK = (X, a1, a2, N,A2) and the public key is PK = (P,A1).

Sign-Gen:
A message m1 ∈ (0, 1)∗ has

S = f(t(m1))
a1a2f−1 = XAa1

1 Aa2
2 (t(m1))

a1a2A
a−1
2

2 A
a−1
1

1 X−1,
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as signature, where f = Aa1
1 Aa2

2 and t(m1) ∈ H \ L.

Verification protocol:
To verify the signature S′s authenticity, a verifier performs the following steps:

Step 1: After obtaining the messagem’s signature, S computes C = (UP−1SPU−1)b1b2 , which
C sends to the signer. A randommatrix U ∈ L and a random integer b1, b2 ∈ Zp \{0, 1}
are selected by the verifier.

Step 2: Q = (X−1CX)a
−1
1 a−1

2 is computed by the signer and sent to the verifier.
Step 3: To verify whether Q = Q1 or not, calculate Q1 = U(t(m1))

b1b2U−1 and determine
accordingly.

Step 4: If the signature is true, Q = Q1. Now consider the verification protocol’s soundness
and completeness.

The verification protocol’s completeness and soundness:
The following theorem is used to confirm the verification protocol’s soundness and completeness.

Completeness:
If the signer and the verifier follow the protocol’s guidelines, the verification procedure is consid-
ered successful.
Theorem 3.1. For any matricesA1, A2 ∈ F \L,X,U ∈ L, a1, a2 ∈ Zp \{0, 1} , t(m1) ∈ H \L is a hash
function, if Q = (X−1CX)a

−1
2 a−1

1 and Q1 = U(t(m1))
b1b2U−1, then the verification protocol is complete

i.e,Q = Q1.

Proof. The private key (X, a1, a2, N,A2) is used by the signer to compute Q = (X−1CX)a
−1
2 a−1

1 .
The verifier then computes C = (UP−1SPU−1)b1b2 , obtains the signature S in m, and returns it
to the signer. Following the formula below, the verifier states that Q = Q1.

Q = (X−1CX)a
−1
2 a−1

1

= (X−1Ca−1
2 a−1

1 X)

= X−1
{
(UP−1SPU−1)b1b2

}a−1
2 a−1

1 X

= X−1
{
(U(XA

a−1
2

2 A
a−1
1

1 X−1)(XAa1
1 Aa2

2 t(m1)
a1a2A

a−1
2

2 A
a−1
1

1 X−1)

(XAa1
1 Aa2

2 X−1)U−1)b1b2
}a−1

2 a−1
1 X

= X−1
{
(U(Xt(m1)

a1a2)X−1)b1b2
}a−1

2 a−1
1 U−1X

= X−1
{
XUt(m1)

a1a2a
−1
2 a−1

1 b1b2U−1X−1
}
X

= Ut(m1)
b1b2U−1 = Q1.

As a result, after receiving Q1, the verifier checks to see if Q = Q1. If it does, he accepts the
signature.

Soundness:
If a dishonest signer cannot persuade the verifier to accept an invalid signature, the verification
protocol is considered to be sound.
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Theorem 3.2. Less than the maximum of
(

1

dt
,

1

e− d

)
, where d is the order of L and e is the order of F ,

may a dishonest signer expect the verifier to accept an invalid signature.

Proof. The dishonest signer will attempt to extract the pair (U, b1, b2) to computeQ so thatQ = Q1,
or he will choose an element Q̄ ∈ F \ L so that Q̄ = Q1, after receiving C = (UP−1SPU−1)b1b2

from the verifier. The probability of selecting the correct pair (U, b1, b2) in the first scenario is not
larger than 1

dt
, where U ∈ L and b1, b2 ∈ Zp \ {0, 1}. The likelihood in the second situation is not

more than 1

e− d
.

3.1 Disavowal protocol

When the verifier receives an invalid signature, the disavowal protocol comes into play. In the
following two scenarios, the signature should be invalid:

(a) At the verification step, the signer is dishonest.
(b) The message has been forged in an unauthorized way.

The verifier can determine whether the foregoing situations have occurred using the disavowal
process.

The verifiermoves on to the next round if it determines thatQ = Q1, or thatQ = t(m1)
b1b2U−1.

The validation procedure is involving new random elements in U1 ∈ L and b3, b4 ∈ Zp \ {0, 1}.

If the verifier calculates C1 = (U1PSP−1U−1
1 ) and sends it to the signer, the verifier then notes

that Q2 = U1(t(m1))
b1b2U−1

1 upon receiving Q3 = (X−1C1X)a
−1
2 a−1

1 from the signer, and comes
to the conclusion that t(m1) is fabricated if and only if UQb1b2

2 U−1 = U1Q
b3b4U−1

1 .

Disavowal protocol’s completeness and soundness:
The following theorems are employed to confirm the accuracy and validity of the disavowal pro-
cess.

Completeness:
If the verifier consistently determines that the signature on message m1 is fraudulent, the dis-
avowal process will be halted.
Theorem 3.3. For any matrices A1, A2 ∈ F \ L, X,U ∈ L and a1, a2 ∈ Zp \ {0, 1} if the verifier
consistently gets,

S ̸= XAa1
1 Aa2

2 (t(m1))
a1a2A

a−1
2

2 A
a−1
1

2 X−1,

then the disavowal protocol is complete, i.e.,

UQb1b2
3 U−1 = U1Q

b3b4
4 U−1. (1)

Proof. Let A1, A2 ∈ F , X ∈ L and a1, a2 ∈ Zp \ {0, 1}, we begin by calculating the left hand side
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of (1),

UQb1b2
3 R−1 = U(X−1C1X)b1b2a

−1
2 a−1

1 U−1

= U(X−1(U1(XA
a−1
2

2 A
a−1
1

1 X−1)(XAa1
1 Aa2

2 (t(m1))
a1a2A

a−1
2

2 A
a−1
1

1 X−1)

(XAa1
1 Aa2

2 X−1U−1
1 )b3b4X)b1b2a

−1
2 a−1

1 U−1

= U(X−1(X(U1(t(m1))
a1a2b3b4U−1

1 ))X−1)X)b1b2a
−1
2 a−1

1 U−1

= U(U1t(m1)
a1a2a

−1
2 a−1

1 b3b4U−1
1 )b1b2U−1

= UU1t(m1)
b1b2b3b4U−1

1 U−1.

(2)

Now calculating the other side in a similar way,

U1Q
b3b4
4 U−1 = UU1t(m1)

b1b2b3b4U−1
1 U−1. (3)

From (1) and (2), we get,

UQb1b2
3 U−1 = U1Q

b3b4
4 U−1. (4)

Therefore the disavowal protocol is complete.

Soundness:
A disavowal protocol is considered valid if a dishonest signer is unable to persuade the verifier to
recognize a legitimate signature as a forged one.
Theorem 3.4. The likelihood that the dishonest signer will be successful in persuading the verifier to accept

a legitimate signature as a fraudulent signature is not larger than t maximum of
(

1

dp
,

1

e− d

)
where d is

the order of F and e is the order of L.

Proof. Assume,

S = XAa1
1 Aa2

2 (t(m1))
a1a2A

a−1
2

2 A
a−1
1

1 X−1,

is a legal signature for t(m1). If the following conditions are met, a dishonest signer may persuade
a verifier that S is a created signature.

Q3 ̸= Ut(m1)
b1b2U−1,

Q4 ̸= U1t(m1)
b3b4U−1

1 .

UQb1b2
3 U−1 = U1Q

b3b4
4 U−1. (5)

However, if we make the assumption, we will end up with a contradiction, which is shown below.
From (1), we get,

Q3 = U−1(U1Q
b3b4
4 U−1

1 )b
−1
2 b−1

1 U

= U1(U
−1Q

b−1
2 b−1

1
4 U)b3b4U−1

1 .

Q3 = U1Kb3b4U−1
1 , where K = U−1Q

b−1
2 b−1

1
4 U. (6)
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The verification protocol’s soundness properly shows that the probability is minimum of(
1− 1

dp
, 1− 1

e− d

)
.

For a valid signature S for F besides the valid signature for t(m1) is S. Check t(m1) = F which is
intimated by,

XAa1
1 Aa2

2 (t(m1))
a1a2A

a−1
2

2 A
a−1
1

1 X−1 = XAa1
1 Aa2

2 Ka1a2A
a−1
2

2 A
a−1
1

1 X−1,

with the same probability given above. It is a contradiction because,

t(m1) ̸= U−1Q
b−1
2 b−1

1
4 U = K,

from (5) since, Q4 ̸= Ut(m1)
b1b1U−1. This implies that the signature S is valid on t(m1). The

condition in (5) is not correct. The maximum of
(

1

dp
,

1

e− d

)
is lesser than the maximum of

(
1−

(
1− 1

dp

)
, 1−

(
1− 1

e− d

))
.

Remark 3.1. During the verification and disavowal protocol the hidden parameters are not revealed so, the
scheme is safe and secure. The fact that the system isn’t considered a zero-knowledge undeniable signature
system may not mean much, however, (

1− 1

dp
, 1− 1

e− d

)
.

4 Analysis of the Proposed Undeniable Signature Method’s Complexity and
Security

The ensuing sections address the intricacy and safety of the suggested incontrovertible signa-
ture method.

4.1 Security analysis

Data Forgery:
The attacker in this instance aims to substitute the false messagem′

1 for the real messagem1. The
adversary will do this by either attempting to get the signer’s private keys or by discovering a
message m′

1 ̸= m1 such that h(m′
1) = h(m1). The adversary will be given the task of solving the

DLCSFP in the first scenario, which is computationally infeasible for particular values as stated in
Definition 2.6. If the hash function creates the scheme as pre-image resistant, the second scenario
will also be computationally infeasible.

Hidden:
We make improvements in the security by concealing the subgroup L. For generating the key in
the undeniable signature scheme, the matrices A1, A2 and X are selected from F\L. When the
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adversary tries to decrypt, he does not know because L is hidden. These two enhancements are
explained in [7].

Existential Forgery:
In this situation [23], an adversary will attempt to produce a valid signature for at least one com-
munication. This can be achieved through one of three methods:

(i) Existential forging through a well-known messaging attack:
Let S represent the totality of the message-related signatures. Suppose a hacker decides to
forge the signature using (m1, s) in S. In order to make h(m′

1) = h(m1) in this scenario, sup-
pose the adversary will attempt to locate am′

1 ̸= m1. However, the method is secure against
this circumstance because of the employment of a second pre-image resistant mechanism.
The attackermust computeQ4 even if h(m1) = h(m′

1) and (m′
1, s) are able to establish a valid

signature m′
1 ̸= m1. But it’s not possible because of DLCSP and FP ′s difficulties.

(ii) Existential fraud with a targeted message attack:
Assume that a set of S message signature combinations is possessed by your opponent. The
opponent is going to try to interpret two messages. A valid signature (m′

1, S) and (m′
1,m1)

with hash values that are not equal, i.e. h(m′
1) ̸= h(m1). The scheme is protected against

this attack because it employs a hash function that resists collisions. Permit the opponent
to obtain a message m ̸= m′ with the following properties: (m′

1, S) is a legal signature,
(h(m1) = h(m′

1). The adversary will then confront the difficulty of solving the DLCSP as
in [10] and in this paper, the inclusion of parameter a2 and the matrix A2 becomes another
DLCSPwhich gives double security againstQ4 computation during the verification process.
Aa1

1 A2 is considered a hard problem in [11]. Given that it is a computationally difficult
challenge, as indicated in Section 3, theDLCSFP is safe against existential forging via selected
message attacks.

(iii) Existential forging by complete break:
Anattacker attempting to counterfeit the signature in this instance is not aware of themessage-
signature association. In order to accomplish this, the adversary will attempt to construct
an invalid signature during communication. However, the technique is secure against this
attack due to the employment of a hash function that is pre-image resistant. Theorem 3.4
investigates the possibility that the verifier will accept a false signature. This means that
existential forgery cannot penetrate the system, and the previous discussion can be summa-
rized as follows.

Theorem 4.1. The DLCSFP problem can be solved if there exists an existential forgery.

Theorem 4.2. The likelihood that a fraud signature is accepted by the verifier is at most 1

| F \ L |
, where

F\L is the cardinality of | F \ L |.

Proof. Let us say someone tries to falsify the signature. The enemy will take the following mea-
sures to accomplish this. The opponent will selectX ′ inN and a′1, a

′
2 ∈ Zp \ {0, 1} before calculat-

ing,

S′ = X ′A
a′
1

1 A
a′
2

2 t(m1)
a′
1a

′
2A

a′−1
2

2 A
a′−1
1

1 X ′−1,

and sending (t(m1), S
′) to the person who verifies.

The signatory receives C ′ = RP−1S′b1b2PR−1 and C ′ after the verifier receives (t(m1), S
′) and

certifies that it is a valid signature. When the adversary intercepts in the middle, they calculate
Q′ = (X ′−1C ′X ′)a

′−1
2 a

′−1
1 .
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The adversary subsequently sends it to the verifier. If there is a tie, the opponent forges the
signature to win. The verifier analyses Q′

1 = Rh(m1)
b1b2R−1 and compares it with Q′. = Q′

1

in order to confirm the signature. To keep this equilibrium in place and ensure that Q′ = Q′
1,

Q′, Q′
1 ∈ F \ L, the adversary will select the parameters in the first phase. Following are the

calculations for the likelihood thatQ′ = Q′
1: Let e and d represent F andL’s respective cardinality.

The amount of ways to obtain Q′, Q′
1 as (Q′, Q′) or (Q′

1, Q
′
1) from F \ L, i.e., Q′ = Q′

1, is ed.
As a result, a large proportion of cases are (e − d). The amount of ways to select (Q′, Q

′

1) out of
F \L×F \L are (e− d)2. As a result, the likelihood of the person who verifies accepting a forged
sign is,

e− d

(e− d)2
<

1

(e− d)
=

1

F \ L
.

Selecting the size of the abelian subgroup L to preserve F \ L variability is crucial.

4.2 Complexity analysis

Using the parameters outlined in Definition 2.6, the following calculates the total number of
operations required for key generation, signature generation, verification, and the disavowal pro-
tocol in the proposed undeniable signature system.

Required number of operations in generation of key:
Wemust calculate P = XAa1

1 Aa2
2 X−1 for key generation, whereA1, A2 ∈ F \L, a1, a2 ∈ Zp\{0, 1}.

The matricesX , A1 and A2 are of order n and are taken over semiring (SR). Multiplying two ma-
trices of order n requires no more than O(n3) bit operations [10]. Thus, (2n3 log p) is the total
number of operations needed to compute Aa1

1 , Aa2
2 [10]. Finally, we need 3n3 additional proce-

dures to calculate XAa1
1 Aa2

2 X−1. Thus, n3(2 log p + 3) is the total number of operations required
for key Generation, and this number is proportional to O(n3 log p).

Figure 1: Comparison of the number of operations needed for Key-Generation using DLCSP and DLCSFP.

Figure 1 illustrates the temporal complexity of the key generation for the DLCSFP-based unde-
niable signature scheme and the DLCSP-based undeniable signature scheme, based on the values
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of n. The matrix’s order is shown on this graph by the x-axis. The temporal complexity of the
DLCSP and DLCSFP-based techniques is plotted on the y-axis. Figure 1 illustrates the curve for
fixed prime numbers with p = 15(say). For various values of n, the value curves illustrate the
computational complexity of key generation in the DLCSP based undeniable signature technique.
For different values of x, the red curves show the temporal complexity of key generation in the
DLCSFP based undeniable signature method. In contrast to the blue and red curves, it is evident
that the main generation temporal complexity results in a positive slope of the curve as the ma-
trix order increases. By analyzing the blue and red curves in the picture, it is evident that there
is a small variation in the slope. The constant and coefficient factors in the time complexity of
the key generation of the schemes are to blame for this. At the least, the temporal complexity is
proportional to (O(n3 log p)).

Required number of operations for generation of sign:
In order to compute

S = XAa1
1 Aa2

2 (t(m1))
a1a2A

a−1
2

2 A
a−1
1

1 X−1

is a signature on a message m1. The number of bit operations needed to create the signature is
proportional to O(n3 log p), as we observed in the key generation phase.

Figure 2: Comparison of the operations needed for Signature Generation using DLCSP and DLCSFP.

Figure 2 illustrates graphically the total number of processes needed for the production of
a signature. Both graphs indicate that the run time is proportional to O(n3 log p), with a slight
variance in the positive slope of the curve, based on the results displayed in Figure 2. The runtime
of undeniable signature systems based onDLCSP andDLCSFP is compared in Figure 2 for varying
matrix sizes.

When one closely observes the divergence of the black curves and the blue curves, the rela-
tionship between (n) and temporal complexity becomes evident. The curve’s positive slope can
be attributed to this. The curves in the two systems are distinguished by the signature formation’s
coefficient terms and temporal complexity constant. These methods of unquestionable signatures
have a time complexity of (O(n3 log p)).

Required number of operations in verification protocol:
To determine the activity level in the validation process, we employ the same technique as previ-
ously 5n3 log p. The expression C = (UP−1SPU−1)b1b2 can be calculated by summing up all bit
operations. Then, each term Q = (X−1CX)a1a2 and Q1 = (U(h(m))b1b2U−1) will require n3 log p
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operations for calculation. The verification protocol’s step 4 comparison requires only one opera-
tion. As a consequence, 6n3 log p+ 1 bit operations are required in total for signature verification,
corresponding to O(n3 log p).

Figure 3: Comparison of the number of operations needed for verification protocols based on DLCSP and DLCSFP.

Agraphical representation of the total operations required for the verificationprotocol is shown
in Figure 3. Although the number of operations required is proportional to O(n3 log p), it can be
seen from Figure 3 that there is a positive slope. The graph shows variations in the curve. For
different values of DLCSP and n, the time complexity or number of operations needed for the ver-
ification protocol of a nonrepudiation signature scheme based on DLCSFP is displayed in Figure
3. On the x-axis, the matrix (n) sequence is displayed, and on the y-axis, the number of opera-
tions needed for the nonrepudiation signature scheme verification protocol based on DLCSP and
DLCSFP. Figure 3 shows the curves in blue and red for fixed values of the primary (p = 15say).

The number of operations required to validate the DLCSP-based undeniable signaturemethod
is shown by the blue curves for a range of values of n. The number of operations needed to vali-
date an undeniable signature method based on DLCSFP is represented by red curves for different
values of n. When these curves are shown side by side, it is evident that the red and blue curves
have positive slopes. Furthermore, the verification procedure of the DLCSFP and DLCSP based
undeniable signature technique requires (O(n3 log p)) operations.

Required number of operations in disavowal protocol:
The verification protocol requires several operations of 12n3 log p + 2, which is proportional to
O(n3 log p), because it has one fewer rounds than the disavowal technique.
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Figure 4: Comparison between the time complexity for disavowal protocol in and the proposed scheme based on DLCSP and DLCSFP.

The obtained outcome of the run time of the disavowal protocol is displayed in Figure 4. As
per our result, the time complexity of [10] (10n3 log p + 2) and our scheme (12n3 log p + 2), have
positive slopes with little difference. Like the previous scheme’s graph, our scheme’s graph shows
some similarities in Figure 4.

Figure 4 shows the temporal complexity of the DLCSFP based undeniable signature scheme
and the disavowal process of the DLCSP based undeniable signature technique. The x-axis of the
graphs shows the matrix order (n),while the y-axis indicates the time complexity of the scheme’s
disavowal protocol based on DLCSFP across various n values and DLCSP for a range of n values.

The graph’s curves take on the appearance shown in Figure 4when the prime p value is 15(say).
For different values of n, the blue curves illustrate the time complexity of the non-repudiation
protocol for the DLCSP signature method. For different choices of the matrix’s order, the time
complexity of the disavowal protocol for the non-repudiation signaturemethod based onDLCSFP
is shown in the figure in magenta. It is evident from examining the two curves in Figure 4 that
the term complexity rises in tandem with n, or more specifically, the matrix’s complexity. The
generated curves have a slope that is positive. The DLCSFP based scheme’s curves and the DLCSP
based scheme’s curves can be compared to see that the curves slopes differ slightly.

Observing the diagram,we can see that theword complexity increaseswith n or the complexity
of the matrix. Positive slopes are found in the resulting curves. The curves slopes clearly differ
slightly when comparing the time complexity between DLCSP and DLCSFP. This difference in the
positive slopes shows that the coefficient and constant terms have an impact on the number of
operations needed to complete the process. In every scenario, the time issues are proportional to
O(n3 log p).

The graph’s blue andmagenta curves can be closely examined to determine that the undeniable
signature scheme based on DLCSFP has a lower runtime than the undeniable signature strategy
based onDLCSP. The advantage of the suggestedprotocol over the old one is that it ismore efficient
and requires less processes. By concealing the secret parameters X, a1, a2, N , and A2 as well as
the commutative subgroup, the suggested undeniable signature scheme’s security is increased.
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Figure 5: Number of steps required for the proposed scheme.

The matrix’s order, (n), is represented by the x-axis, and its O(n3 log p), by the y-axis. Figure
5 provides proof that the y-axis values increase in tandem with the matrix order, resulting in
a positive slope curve. The graphs in Figure 1 have slightly different slopes. The order of the
matrix and the number of operations required for undeniable signature scheme based onDLCSFP.
Comparing the security of the proposed scheme and the scheme in [10], the proposed scheme is
better and more secure than the scheme in [10].

5 Conclusion

In this paper, we introduce a novel problem called DLCSFP. We analyze its security and assess
its complexity using an exhaustive searchmethod. AUSS based on the DLCSFP is proposed using
a semiring as the platform, and an example is provided. The completeness and soundness of the
plan are indicated by the theorems. Various kinds of attacks give the USS security. The time
complexity for each step in the USS is analyzed and illustrated using graphical representations,
which exhibit the same runtime as the current scheme.
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